If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+160q=0
a = 2; b = 160; c = 0;
Δ = b2-4ac
Δ = 1602-4·2·0
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-160}{2*2}=\frac{-320}{4} =-80 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+160}{2*2}=\frac{0}{4} =0 $
| –6x–3–2x=–5x–1 | | 3(-0.4x)=18 | | 3(-0.4x)=18 | | 3(-0.4x)=18 | | -6x+16=-6x+16 | | 4•(x+2)=58+3x | | 4•(x+2)=58+3x | | 13x–10=26 | | 13x–10=7x+26 | | X+4=5x-18 | | 3x²-52x+12=0 | | x=42^(1/2) | | T(n)=8n+9 | | x–8=19 | | x–8=19 | | 6x-10=-29 | | t2+t−56=0 | | 299.58x=0.3x | | v×3+v/5=6 | | 2^x=10^21 | | 3(2x-1)-2(2-5x1=1 | | 100=60,88=x | | 5x-8+2x=4x+2-x | | x+1^2=2x+10 | | 2x2-x=-5 | | 9x2-23x+10=0 | | 9х2-23x+10=0 | | 9x2x=18 | | Xx8.25=840 | | X^2-180x+8500=0 | | m^2+16m-8=0 | | |9y+9|-6=0 |